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An “inverse” problem to find the body shape given the surface velocity distribution in 
axisymmetric irrotational flow is formulated. The body surface is represented by a vortex 
sheet. An iterative, interactIve computer program to compute the body shape starting from an 
assumed shape is dcvclopcd. The obtained body shapes and the corresponding surface velocity 
distributions for three test cases are presented. I ,991 Acadcmlc Press, 1°C 

The “inverse” problem solution procedure involves finding the geometry of a 
body given the velocity or pressure distribution on its surface. This is distinct from 
the “direct” problem in which the flow field around a given body is calculated. 
Sometimes in aerodynamic design problems, it becomes necessary to find a body 
shape with a certain surface velocity distribution. One can address this problem by 
trial and error, i.e., by solving the direct problem for several body shapes and 
observing which one of them gives the required characteristics. However, this is a 
tedious and time-consuming process and requires considerable amount of expertise 
from the investigator. Hence, it becomes desirable to have a solution procedure to 
solve the inverse problem, thus eliminating the trial and error in design problems. 
In the current study, it is assumed that flow is axisymmctric, incompressible, and 
irrotational. 

PREVI~I JS STIKXES 

With the aid of high-speed computers, several numerical methods for solving 
axisymmetric-flow inverse-problems are reported to have been successfully 
developed in recent years. Bristow [l] uses a surface-source distribution to 

generate the flow and the surface of an unknown body configuration. The body 
shape and the source distribution are determined using a Lagrangian type error 
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minimization technique via an iterative calculation procedure. This solution techni- 
que minimizes the difference between a predefined surface tangential velocity 
distribution and the calculated velocity distribution based on the updated body 
shape and source distribution. 

Zedan and Dalton [24] use an axial source distribution to generate the body 
and the flow. They utilize the stream function and the calculated velocities due to 
the axial source distribution to update the shape of the body, through an iterative 
procedure. The algorithm of their method is much simpler than that due to Bristow. 

Fernandez [S] also utilizes the stream function approach in his mathematical 
model. However, he uses a surface source distribution instead of an axial source 
distribution. He formulates the problem in terms of “source-rings,” and adapts a 
higher-order singularity technique to improve the accuracy and efficiency of the 
solution. Converged numerical solutions are obtained for several bodies having 
smooth surfaces. Based on the results of the test cases, Fernandez claimed that his 
method has a faster convergence rate than does Bristow’s method. 

Aside from the three numerical methods just cited, there have also been a number 
of other methods for solving the inverse problem of some special cases, employing 
various techniques. Several of these are included with the references listed at the end 
of this paper [6-111. 

PROBLEM FORMULATION 

Consider a closed stream surface S which is symmetric about the z axis and is 
generated by a vortex sheet, see Fig. 1. A uniform flow is assumed to be moving in 
the negative z direction. Denote the tangential velocity on the surface by U,. Since 
the surface S is a stream surface, the relative normal velocity on it has to be zero. 
The vortex sheet may be considered as formed by a series of “vortex rings” coaxial 
with the z axis. 
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FIG. I. Definition sketch 
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By setting the tangential velocity on the inside of the surface S represented by a 
vortex sheet to zero. the result obtained is 

r(4) = -U,(q), (1) 

where T(q) is the strength of the vortex ring at any point q on S. Satisfying the zero 
tangential velocity on the inside surface of a closed body represented by a vortex 
sheet, the zero normal velocity on the external body surface is automatically 
satisfied (see Appendix A). 

A definition sketch for a vortex ring and the flow pattern generated by the ring 

a 

FIG. 2. (a) Definition sketch for a vortex ring. (b) Stream lines in the .X-Z plane due to a vortex ring 
coaxial with the : axis. 
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b 

FIG. 2-Continued 

in x-z plane are shown in Fig. 2. The following expression for the stream function 
of a vortex ring given by Lamb [12] is used, 

Yu,(P, 4) =& (r, + r,)CW) - a~)12 (2) 

where Y,(p, q) is the stream function at a point P(r,, zP) due to a unit strength 
vortex ring of radius ry, situated at zy, perpendicular to z axis, and 

r, = J(zp - zy)2 + (r/, - rq)* (3) 

r2 = J(zp - z,,)~ - (rp - ry)’ (4) 

I r2-rl A = - 
r,+r, 

(5) 
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Here K(A) and E(A) are complete elliptic integrals of the first and second kind, 
respectively. 

The stream function due to an oncoming uniform stream of speed W is given by 

I),,.= -iWr;?,. 

The resultant stream function at any point p due to the uniform flow and the vortex 
sheet is 

(9) 

In the above equation, ds, is the arc length at point q in the meridional plane. Since 
S is a stream surface, we have Y(p) = 0, for a point p on S, giving 

The above is a nonlinear integral equation in terms of the unknown body radius 
r,,. There are no known existence or uniqueness theorems available regarding the 
solutions to the above equation, to the authors’ knowledge. However, as already 
outlined before, several numerical techniques are available to solve the inverse 
problem. Following the same spirit, we develop a numerical technique in the 
following sections. 

SOLUTION PROCEDURE 

Given U,Y, the tangential velocity on the surface, the radius r of S may be 
obtained through an iterative procedure starting with an assumed profile in the 
following manner, 

where k is the iteration number. Note that the surface S as determined from (11) 
not only has a tangential velocit distribution identical to the pre-defined velocity 
distribution U,, but also automatically satisfies the Neumann boundary condition 
(i.e., no flow can penetrate through the surface), since, by definition, it is the stream 
surface Y = 0. 

The vortex-ring stream function given by (2) contains a mathematical singularity 
as the point q approaches p, i.e., as q + p, 3. + 1, and K(ib)-+ a. Even though the 
integral in (11) is improper, it is integrable and is finite. The integral has to be 
evaluated analytically in the neighborhood of the singularity. The procedure is out- 
lined below. Let A and B be the two end points of an arc-segment As on which the 
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singularity point P is located, see Fig. 1. Let the arc lengths AP and BP be As, and 
ds,, respectively, and As,, = As, + As,. Let z, and z2 be the two extremities of the 
surfaces S on the z axis. Equation (11) may then be expressed as 

(12) 

where I,, I,, and I, are the integrals from z, to B, B to A, and A to z2, respectively. 
I1 and I, are singularity free and so can easily be evaluated numerically. Only I, 
contains an integrable singularity at the point P. We will now evaluate I, analyti- 
cally for a small arc length As,,, 

r, +O (14) 

r2 + 2r, (15) 

i. + 1 (16) 

E(i) + 1, (17) 

and 

K(A) + In J&= In ‘(2) 

(13) 

(18) 

Substituting Equations (14) to (18) in (13) (see Appendix B), we obtain 

I, N rpr,, { [3 In 2 i In rp - l](As, + As,) 

- (As, In ds, + As, In As,)). (19) 

This expression for I, is valid as long as r2 rr 2r, and r2 $ r, Since the integrals of 
(1 1 ), I,, I,, and I, are all functions of ry and rq, we may write ( 11) as 

(r:Y + ’ =./If,, rfl). (20) 
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COMPUTER ALGORITHM 

Various techniques have been tried for solving the above iteration formula. This 
iteration formula was found to be extremely slow in convergence. Among the 
several techniques tried, the weighting factor approach seems to be the most 
satisfactory one. Consider that a converged set of r’s has been obtained. We then 
have 

(r;)k -f(f,, ri) = 0. (21) 

Combining (20) and (21) yields 

(yy+ ’ = (1 + M)f(f-,, Yi, - M($)” 

= F(M, r,, r:), (22) 

where M is a weighting factor such that A4 3 0. This is the equation that has been 
used in the present investigation. The adaptation of the weighting factor has 
immensely improved the convergence rate of calculation. 

An interactive computer program is developed to solve the above equation in an 
iterative manner. This has the capability to display the body shape on the terminal 
in order to allow the investigator to observe the body shape after each iteration, 
and to gain experience in selecting the weighting factor to be used. As mentioned 
before, the weighting factor A4 has to be such that M 3 0. The reason for this will 
be clear if we re-write the iteration formula (22) in the form, 

(qff = f(r,, $-W(r~)k-f(rq, yz)l. (23) 

Say that in the kth iteration (Y;)” > f(r,, Y:). Then, m the next iteration, rj has 
to be corrected such that it becomes smaller. Since the bracketed term is greater 
than zero, A4 has to be greater than or equal to zero. It can be argued similarily 
when (Y;)” < f(T,, Y:). A flow chart showing the computation procedure is shown 
in Fig. 3. 

As indicated in the flow diagram, a prescribed velocity (or pressure) distribution, 
Us(q), which is numerically equal to the vortex strength f,, is the input for this 
program. The zy ‘s are given, but the ry’s are unknown. A closed surface of arbitrary 
configuration may be assumed as the initial shape for the unknown surface which 
is to be determined. A weighting factor A4 is then selected (initially M should be 
small, say, M< 3). A new set of stream-surface radii is calculated by (22), and the 
configuration so obtained is displayed and visually examined. The interactive com- 
puter program provides several options for the investigator. The investigator may 
select a new M value for the next iteration, call the direct-problem subroutine to 
compute the velocity distribution (if desired), continue, or terminate the calcula- 
tion. The investigator may instruct the program to “go back” to the previous itera- 
tion and use a different A4 value to repeat the calculation. This last-mentioned 
option is particularily useful when some “kinks?’ appear on the updated surface 

581;942-I? 
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Read the given velocity profile T(Z) 

Assume Initial Body Radii r “4 

t 
Select Weighting Factor M 

Compute r y1 = ) from EQN (23) 

Plot the new Body Shape 

Keep the Previous 

M value 

Call the Direct program 
to obtain the velocity 

Profile for the 

1 and the Given Velocitv Profiles 1 

V 
Update the Body Profile By 

Setting r:+ ry 

1 
k =k+l 

the two Velocity Profiles 

FIG. 3. Flow diagram for the inverse problem using an interactive procedure. 
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FIG. 4. Assumed body shapes, their calculated velocity profiles and pressure coetlicients. 
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profile due to the over-amplification effect of a larger-than-desired weighting factor 
used. (This sometimes happens when M > 6.) With this option, the investigator can 
“erase” the undesired results, go “backward” one iteration, and use a smaller A4 
value to restart the computation. The solution may be considered converged when 
the maximum difference between the calculated r,,‘s from two successive iterations, 
or the maximum relative error between the computed and the prescribed velocity 
distributions, is smaller than a preselected allowable value. 
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FIG. 5. Comparison between the actual shape and the calculated shape for body A as the iterations 
progress. 
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FIG. 6. Comparison between the actual shape and the calculated shape for body B as the iterations 
progress. 

RESULTS 

Three surface configurations, A, B, and C, which are shown in Fig. 4, have been 
used as test shapes to validate the vortex-sheet inverse-problem solution method 
developed. Shape A is a spheroid of slenderness ratio of 5: 1, shape B is a 
streamlined form, and shape C is similar to the body shape used by Bristow [ 1 ] 
which has rapid changes in the surface slope and body radius. The velocity and 
pressure distributions for these bodies calculated by the vortex-sheet direct-problem 
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FIG. 7. Comparison between the actual shape and the calculated shape for body C as the iterations 
progress. 

method are also shown in Figure 4. These velocity distributions are used as the 
“predefined” velocity distributions in the inverse-problem calculations. The oncom- 
ing flow is assumed to have unit velocity, i.e., W= 1. 

The stream-surface shapes obtained by the inverse method through the iterations 
are shown in Figs, 5-7. The solid-line profiles are the calculated shapes. These 
figures show how the unknown shapes with predefined surface velocity (or 
pressure) distributions are obtained progressively by the vortex-sheet inverse- 
problem solution procedure. Successive iteration results are not shown; rather, 
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some intermediate results are shown. The iteration number and the weighting factor 
used in that iteration are shown for each shape drawn. 

Figure 8 shows the converged solutions obtained for the three body shapes. and 
comparisons of the calculated and the prescribed velocity distributions. In the pre- 
sent examples the iterations are considered to be converged when the relative error 
between the calculated and the given velocity distributions is less than or equal to 
1%. The good agreement between the calculated and the given velocity profiles 
confirms the validity of the new inverse-problem method developed (See Fig. 8). 
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FIG. 8. Comparison between the actual values and the converged values. 
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CONCLUSIONS 

A vortex-sheet method to solve the axisymmetric inverse problem is developed 
and is successfully demonstrated in solving the shown test cases. This program can 
be used as an efficient tool in the design process. The advantage of this method is 
that it eliminates the calculation of the direct problem at every iteration (thus 
reducing calculation time considerably); instead, it uses the given velocity. The 
singular integral that arises in the problem formulation has been integrated analyti- 
cally as shown in Appendix B. 

A few words need to be said about the use of the weighting factor M used to 
speed up convergence. Unfortunately, there is no set rule or procedure which the 
authors could prescribe in using M other than that one has to be judicious. It is 
found through experience that the value of M used should not be too large (6 in 
this case). In the present examples, either the starting body shape or the actual 
body shape has sharp corners. In such a case, use of too large a value for M some- 
times produces kinks in the calculated body profile. For such occasions, the facility 
to go back one step and redo the calculation with a smaller M value is provided 
in the computer program. In the authors’ opinion, one should use a value of 0 for 
A4 in the initial stages of the computation. This program is intended for use in 
finding an unknown body shape given the velocity profile. In such a situation, one 
should plot the calculated body shapes for two successive iterations to see if there 
is any change in the two calculations. If no change can be observed visually, one 
can increase the value of M to see if that produces any change in successive calcula- 
tions (iterations). Once one is satisfied that even by using a moderately high value 
for M, there is no change between two successive iterations, then the direct problem 
should be called to calculate the velocity and this calculated velocity should be 
compared against the input. 

As far as the uniqueness of the solutions is concerned, the derived integral equa- 
tion in terms of the unknown body radius rP is highly nonlinear. To the best of the 
authors’ knowledge there are no uniqueness or existence proofs for this type of 
integral equation. From experience, it appears that, given a pressure/velocity 
distribution for which there is a unique body shape, the solution method seems to 
find that shape. The formulation however, requires that the given pressure/velocity 
distribution correspond to that of a closed body. 

APPENDIX A: VORTEX SHEET APPROACH 

Let the surface of a closed body in a flow field be represented by a vortex sheet. 
Assume further that there are no singularities within the body. Let S + represent the 
external body surface and S ~ represent the interior of the body surface as shown 
in Fig. A.l. 

THEOREM 1. The condition that the body surface S + is a stream surface can be 
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FIG. A.l. Vortex sheet approach. 

satisfied by setting the tangential velocity on the interior (S- ) qf the surface S + to 
zero. 

Proof Zero tangential velocity on the surface S ~ implies that the velocity 
potential @ is constant (= C) on the surface S ~. We have for the kinetic energy T 
of the fluid within the body, 

But the integral js- (&B/&z) dS is zero since there are no singularities within the 
body. This implies that the kinetic energy of the fluid within the body is zero. Hence 
the fluid inside the body is at rest. So the normal velocity of the fluid on the interior 
of the body S ~ is also zero. The normal velocity across a vortex sheet is continuous 
and hence the normal velocity on the exterior surface S + is also zero. Thus the 
body surface S + is a stream surface satisfying the no penetration condition. Q.E.D. 

Under the above conditions, it can be shown that the vortex sheet strength is 
equal in magnitude to the tangential velocity on the body surface. 

By the use of Stokes’ theorem, the circulation around a closed circuit can be 
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shown equal to the flow of vorticity coming out of the area enclosed by that circuit 
(see Fig. A. 1 ), 

V.ds= o dA = 1- ds, (A.2) 

where f is the vortex sheet strength per unit length defined as 

lim o An=lY (A.3) 4,l + 0, 0, - % 

We then have 

or 

-U,As=TAs, (A.4) 

u,, = - r. (A.51 

If the sign convention for either U, or r is reversed, then we get the equality 

u, = I-. (A.61 

By setting the tangential velocity on the inside of the body surface to zero, an 
integral equation of the second kind in terms of the unknown vortex strength (also 
the tangential velocity) on the body surface is derived. A very highly accurate com- 
puter program to solve the direct problem is written and used to tind the velocity 
distribution on the given body surface. The analytical solution for longitudinal flow 
past a spheroid is known. The tangential velocity is U,s = (1 + k,,) cos LX, where k,, 
is the added mass of the spheroid in the longitudinal direction and M is the angle 
made by the tangent vector with the longitudinal axis. For a 5: 1 spheroid as used 
in shape A, k,, = 0.0591211. The relative error in the calculated tangential velocity 
in the middle is 0.0014%. The relative error is no more than 0.1% in other areas 
except at the three or four end points where it climbs to 6.9%. This program can 
be made even more accurate at the end points but it is deemed accurate enough for 
the present purposes. 

The preceding proofs and a more detailed account of the direct problem solution 
procedure can be found in the as yet unpublished class notes of Professor 
L. Landweber [ 133. 

APPENDIX B: TREATMENT OF THE SINGULARITY IN THE INVERSE PROBLEM 

The elliptic integral K(A) in (13) has a logarithmic singularity as q -+ p, i.e., as 
jb -+ 1. This singularity becomes an integrable singularity if we assume that the 
vortex strength is constant over the segment BPA and equal to r,,. Substituting 
Eq. (14) to (18) in (13) we obtain 
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I 
A 

I, = l-, 2r, [ 1 In 2 + 4 In rP - $ In r l - 11 ds, 
B 

= rprp 
s 

A[31n2-2+Inr,-Inr,]d~~. (B.1) 
R 

In the above equation as q + p, r, -0 and the integrand becomes singular. 
Consider the integral 

i 

A 

In r, ds,, (B.2) 
P 

where, by definition, r, = J(z, - zy)’ + (rp -ry)2 and is equal to the distance s 
measured along the straight line segment PA from the point P (see Fig. B.1). We 
then have 

s 

A 

s 

AS> 
In r, ds= In s ds = [s In s - s]~~~ = As1 ln(ds,) -As,, (B.3) 

i’ 0 

since 
lim s In s = 0. 
5-o 

Hence, we have 

[3ln2-2+lnr,-lnr,]ds 

= rprp{ [3 In 2 f In rp - l](ds, + As,) 

-(ds,Inds,+ds,lnds,)). 

FIG. B.l. Singularity treatment. 

(B.4) 
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